Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.180
Filtrar
1.
Commun Biol ; 7(1): 473, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637683

RESUMO

Bacterial phytochromes are attractive molecular templates for engineering fluorescent proteins (FPs) because their near-infrared (NIR) emission significantly extends the spectral coverage of GFP-like FPs. Existing phytochrome-based FPs covalently bind heme-derived tetrapyrrole chromophores and exhibit constitutive fluorescence. Here we introduce Rep-miRFP, an NIR imaging probe derived from bacterial phytochrome, which interacts non-covalently and reversibly with biliverdin chromophore. In Rep-miRFP, the photobleached non-covalent adduct can be replenished with fresh biliverdin, restoring fluorescence. By exploiting this chromophore renewal capability, we demonstrate NIR PAINT nanoscopy in mammalian cells using Rep-miRFP.


Assuntos
Microscopia , Fitocromo , Animais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Bactérias/metabolismo , Mamíferos
2.
J Phys Chem B ; 128(15): 3614-3620, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38581077

RESUMO

Bacteriophytochrome is a photoreceptor protein that contains the biliverdin (BV) chromophore as its active component. The spectra of BV upon mutation remain remarkably unchanged, as far as spectral positions are concerned. This points toward the minimal effect of electrostatic effects on the electronic structure of the chromophore. However, the relative intensities of the Q and Soret bands of the chromophore change dramatically upon mutation. In this work, we delve into the molecular origin of this unusual intensity modulation. Using extensive classical MD and QM/MM calculations, we show that due to mutation, the conformational population of the chromophore changes significantly. The noncovalent interactions, especially the stacking interactions, lead to extra stabilization of the cyclic form in the D207H mutated species as opposed to the open form in the wild-type BV. Thus, unlike the commonly observed direct electrostatic effect on the spectral shift, in the case of BV the difference observed is in varying intensities, and this in turn is driven by a conformational shift due to enhanced stacking interaction.


Assuntos
Fitocromo , Fitocromo/química , Biliverdina/química , Conformação Molecular , Proteínas de Bactérias/química
3.
Methods Mol Biol ; 2795: 85-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594530

RESUMO

Thermal reversion of phytochromes is the light-independent but strongly temperature-dependent relaxation of the light-activated Pfr form of phytochromes back into the inactive Pr ground state. The thermal reversion rates of different phytochromes vary considerably. For phytochrome B (phyB), thermal reversion represents a critical parameter affecting phyB activity as it reduces the active phyB Pfr pool, accelerated by increasing temperatures. Phytochromes are dimers existing in three different states: Pfr-Pfr homodimer, Pfr-Pr heterodimer, and Pr-Pr homodimer. Consequently, thermal reversion occurs in two steps, with Pfr-Pfr to Pfr-Pr reversion being much slower than reversion from Pfr-Pr to Pr-Pr. To measure thermal reversion in vivo, the relative proportion of Pfr in relation to the total amount of phytochrome (Ptot) must be determined in living samples. This is accomplished by in vivo spectroscopy utilizing dual wavelength ratiospectrophotometers, optimized for assaying phytochromes in highly scattering plant material. The method is depending on the photoreversibility of phytochromes displaying light-induced absorbance changes in response to actinic irradiation. In this chapter, we describe the experimental design and explain step-by-step the calculations necessary to determine the thermal reversion rates of phyB in vivo, taking into account phytochrome dimerization.


Assuntos
Fitocromo B , Fitocromo , Análise Espectral , Luz
4.
Methods Mol Biol ; 2795: 105-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594532

RESUMO

In this method, we employed HEK293T cells to express the plant photoreceptor phytochrome B (phyB). Through the application of various treatments such as phycocyanobilin (PCB) supplementation, red light exposure, and temperature adjustments, the phyB proteins exhibited liquid-liquid phase separation, leading to the formation of biomolecular condensates. Here, we present a comprehensive description of the protein expression, cell treatment, and imaging capture procedures. This detailed guide provides step-by-step instructions on how to induce phase separation of phyB proteins in HEK293T cells. By utilizing this approach, researchers can investigate the physicochemical characteristics and dynamic formation process of phyB photobodies with precision.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Humanos , Fitocromo B/metabolismo , Fitocromo/metabolismo , Proteínas de Arabidopsis/metabolismo , Células HEK293 , Arabidopsis/metabolismo , 60422 , Fatores de Transcrição/metabolismo , Luz , Células Fotorreceptoras/metabolismo
5.
Methods Mol Biol ; 2795: 161-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594537

RESUMO

The PHYTOCHROME INTERACTING FACTORs (PIFs) play pivotal roles in regulating thermo- and photo-morphogenesis in Arabidopsis. One of the main hubs in thermomorphogenesis is PIF4, which regulates plant development under high ambient temperature along with other PIFs. PIF4 enhances its own transcription and PIF4 protein is stabilized under high ambient temperature. However, the mechanisms of thermo-stabilization of PIF4 are less understood. Recently, it was shown that SUPPRESSOR OF PHYA-105 1 (SPA1) can function as a serine/threonine kinase to phosphorylate PIF4 in vitro, and the phosphorylated form of PIF4 is more stable under high ambient temperature conditions. In this chapter, we describe the in vitro kinase assay of PIF4 by SPA1. In principle, this protocol can be applied for other putative substrates and kinases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Arabidopsis/metabolismo , Fitocromo/metabolismo , Desenvolvimento Vegetal , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Ciclo Celular/metabolismo
6.
Methods Mol Biol ; 2795: 195-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594540

RESUMO

The phytochrome-interacting factor 4 (PIF4) is a well-known transcription factor that plays a pivotal role in plant thermomorphogenesis, coordinating growth and development in response to temperature changes. As PIF4 functions by forming complexes with other proteins, determining its interacting partners is essential for understanding its diverse roles in plant thermal responses. The GST (glutathione-S-transferase) pull-down assay is a widely used biochemical technique that enables the investigation of protein-protein interactions in vitro. It is particularly useful for studying transient or weak interactions between proteins. In this chapter, we describe the GST pull-down approach to detect the interaction between PIF4 and a known or suspected interacting protein. We provide detailed step-by-step descriptions of the assay procedures, from the preparation of recombinant GST-PIF4 fusion protein to the binding and elution of interacting partners. Additionally, we provide guidelines for data interpretation, quantification, and statistical analysis to ensure robust and reliable results.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fitocromo/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Methods Mol Biol ; 2795: 183-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38594539

RESUMO

Phytochromes are red (R) and far-red (FR) light photoreceptors in plants. Upon light exposure, photoactivated phytochromes translocate into the nucleus, where they interact with their partner proteins to transduce light signals. The yeast two-hybrid (Y2H) system is a powerful technique for rapidly identifying and verifying protein-protein interactions, and PHYTOCHROME-INTERACTING FACTOR3 (PIF3), the founding member of the PIF proteins, was initially identified in a Y2H screen for phytochrome B (phyB)-interacting proteins. Recently, we developed a yeast three-hybrid (Y3H) system by introducing an additional vector into this Y2H system, and thus a new regulator could be co-expressed and its role in modulating the interactions between phytochromes and their signaling partners could be examined. By employing this Y3H system, we recently showed that both MYB30 and CBF1, two negative regulators of seedlings photomorphogenesis, act to inhibit the interactions between phyB and PIF4/PIF5. In this chapter, we will use the CBF1-phyB-PIF4 module as an example and describe the detailed procedure for performing this Y3H assay. It will be intriguing and exciting to explore the potential usage of this Y3H system in future research.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fitocromo , Proteínas de Saccharomyces cerevisiae , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transativadores/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Gene ; 913: 148378, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38490512

RESUMO

The gene encoding EARLY FLOWERING3 (ELF3) is necessary for photoperiodic flowering and the normal regulation of circadian rhythms. It provides important information at the cellular level to uncover the biological mechanisms that improve plant growth and development. ELF3 interactions with transcription factors such as BROTHER OF LUX ARRHYTHMO (BOA), LIGHT-REGULATED WD1 (LWD1), PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), PHYTOCHROME-INTERACTING FACTOR 7 (PIF7), and LUX ARRHYTHMO (LUX) suggest a role in evening complex (EC) independent pathways, demanding further investigation to elucidate the EC-dependent versus EC-independent mechanisms. The ELF3 regulation of flowering time about photoperiod and temperature variations can also optimize crop cultivation across diverse latitudes. In this review paper, we summarize how ELF3's role in the circadian clock and light-responsive flowering control in crops offers substantial potential for scientific advancement and practical applications in biotechnology and agriculture. Despite its essential role in crop adaptation, very little is known in many important crops. Consequently, comprehensive and targeted research is essential for extrapolating ELF3-related insights from Arabidopsis to other crops, utilizing both computational and experimental methodologies. This research should prioritize investigations into ELF3's protein-protein interactions, post-translational modifications, and genomic targets to elucidate its contribution to accurate circadian clock regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Fitocromo , Relógios Circadianos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Ritmo Circadiano/genética , Fotoperíodo , Fitocromo/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/genética
9.
New Phytol ; 242(3): 909-915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477037

RESUMO

Phytochrome B (phyB) is a red and far-red photoreceptor that promotes light responses. Upon photoactivation, phyB enters the nucleus and forms a molecular condensate called a photobody through liquid-liquid phase separation. Phytochrome B photobody comprises phyB, the main scaffold molecule, and at least 37 client proteins. These clients belong to diverse functional categories enriched with transcription regulators, encompassing both positive and negative light signaling factors, with the functional bias toward the negative factors. The functionally diverse clients suggest that phyB photobody acts either as a trap to capture proteins, including negatively acting transcription regulators, for processes such as sequestration, modification, or degradation or as a hub where proteins are brought into close proximity for interaction in a light-dependent manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Humanos , Fitocromo B/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Células Fotorreceptoras/metabolismo , Fitocromo/metabolismo
10.
Cell Rep ; 43(2): 113726, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308844

RESUMO

Warm ambient conditions induce thermomorphogenesis and affect plant growth and development. However, the chromatin regulatory mechanisms involved in thermomorphogenesis remain largely obscure. In this study, we show that the histone methylation readers MORF-related gene 1 and 2 (MRG1/2) are required to promote hypocotyl elongation in response to warm ambient conditions. A transcriptome sequencing analysis indicates that MRG1/2 and phytochrome interacting factor 4 (PIF4) coactivate a number of thermoresponsive genes, including YUCCA8, which encodes a rate-limiting enzyme in the auxin biosynthesis pathway. Additionally, MRG2 physically interacts with PIF4 to bind to thermoresponsive genes and enhances the H4K5 acetylation of the chromatin of target genes in a PIF4-dependent manner. Furthermore, MRG2 competes with phyB for binding to PIF4 and stabilizes PIF4 in planta. Our study indicates that MRG1/2 activate thermoresponsive genes by inducing histone acetylation and stabilizing PIF4 in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Histonas , 60485 , Arabidopsis/genética , Cromatina , Metilação , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Cromossômicas não Histona
11.
Plant Physiol Biochem ; 208: 108434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412703

RESUMO

Fluorometry is an effective research tool in biology and medicine; it is widely used in the study of the photosynthetic pigment apparatus in vivo. This method can be applied to the key plant photoreceptor phytochrome (phy). The fluorescence of phytochrome in plants was recorded for the first time in the group of the author, and a spectrofluorometric technique for its in vivo study was developed. The photophysical and photochemical properties of the pigment were described, and the photoreceptor was shown to be present in plants as two phenomenological types-active (at cryogenic temperatures) and water-soluble (Pr') and inactive and amphiphilic (Pr″). The scheme of the photoreaction explaining their photochemical distinctions was proposed. Phytochrome A was shown to comprise both types (phyA' and phyA″), whereas phytochrome B was only the second type. For phyA', distinct conformers have been detected. phyA' and phyA″ differ by the N-terminus of the molecule, possibly by serine phosphorylation. They mediate, respectively, the very low fluence and high irradiance photoresponses. Light, internal factors (kinase/phosphatase balance, pH), and hormones (jasmonate) were shown to affect the content and functions of the two phyA pools. All this points to the effectiveness of the developed method for invivo investigations of the phytochrome system. The data obtained can be applied in practical terms in agrobiology and light culture, as well as in the use of phytochrome as a new nanotool and a fluorescent probe.


Assuntos
Proteínas de Arabidopsis , Fitocromo , Espectrometria de Fluorescência , Fitocromo A , Plantas , Fitocromo B , Luz
12.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 3): 59-66, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376821

RESUMO

Sorghum, a short-day tropical plant, has been adapted for temperate grain production, in particular through the selection of variants at the MATURITY loci (Ma1-Ma6) that reduce photoperiod sensitivity. Ma3 encodes phytochrome B (phyB), a red/far-red photochromic biliprotein photoreceptor. The multi-domain gene product, comprising 1178 amino acids, autocatalytically binds the phytochromobilin chromophore to form the photoactive holophytochrome (Sb.phyB). This study describes the development of an efficient heterologous overproduction system which allows the production of large quantities of various holoprotein constructs, along with purification and crystallization procedures. Crystals of the Pr (red-light-absorbing) forms of NPGP, PGP and PG (residues 1-655, 114-655 and 114-458, respectively), each C-terminally tagged with His6, were successfully produced. While NPGP crystals did not diffract, those of PGP and PG diffracted to 6 and 2.1 Šresolution, respectively. Moving the tag to the N-terminus and replacing phytochromobilin with phycocyanobilin as the ligand produced PG crystals that diffracted to 1.8 Šresolution. These results demonstrate that the diffraction quality of challenging protein crystals can be improved by removing flexible regions, shifting fusion tags and altering small-molecule ligands.


Assuntos
Fitocromo , Sorghum , Fitocromo B/genética , Sorghum/genética , Sorghum/metabolismo , Cristalização , Cristalografia por Raios X , Fitocromo/química , Fitocromo/genética , Fitocromo/metabolismo , Luz
14.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396875

RESUMO

Plants possess the remarkable ability to sense detrimental environmental stimuli and launch sophisticated signal cascades that culminate in tailored responses to facilitate their survival, and transcription factors (TFs) are closely involved in these processes. Phytochrome interacting factors (PIFs) are among these TFs and belong to the basic helix-loop-helix family. PIFs are initially identified and have now been well established as core regulators of phytochrome-associated pathways in response to the light signal in plants. However, a growing body of evidence has unraveled that PIFs also play a crucial role in adapting plants to various biological and environmental pressures. In this review, we summarize and highlight that PIFs function as a signal hub that integrates multiple environmental cues, including abiotic (i.e., drought, temperature, and salinity) and biotic stresses to optimize plant growth and development. PIFs not only function as transcription factors to reprogram the expression of related genes, but also interact with various factors to adapt plants to harsh environments. This review will contribute to understanding the multifaceted functions of PIFs in response to different stress conditions, which will shed light on efforts to further dissect the novel functions of PIFs, especially in adaption to detrimental environments for a better survival of plants.


Assuntos
Proteínas de Arabidopsis , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(8): e2312853121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349881

RESUMO

Light is a crucial environmental factor that impacts various aspects of plant development. Phytochromes, as light sensors, regulate myriads of downstream genes to mediate developmental reprogramming in response to changes in environmental conditions. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) is an E3 ligase for a number of substrates in light signaling, acting as a central repressor of photomorphogenesis. The interplay between phytochrome B (phyB) and COP1 forms an antagonistic regulatory module that triggers extensive gene expression reprogramming when exposed to light. Here, we uncover a role of COP1 in light-dependent chromatin remodeling through the regulation of VIL1 (VIN3-LIKE 1)/VERNALIZATION 5, a Polycomb protein. VIL1 directly interacts with phyB and regulates photomorphogenesis through the formation of repressive chromatin loops at downstream growth-promoting genes in response to light. Furthermore, we reveal that COP1 governs light-dependent formation of chromatin loop and limiting a repressive histone modification to fine-tune expressions of growth-promoting genes during photomorphogenesis through VIL1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Mol Biol ; 436(5): 168451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246412

RESUMO

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to the phytochromes sensing red and far-red light reversibly. Only the cGMP phosphodiesterase/Adenylate cyclase/FhlA (GAF) domain is needed for chromophore incorporation and proper photoconversion. The CBCR GAF domains covalently ligate linear tetrapyrrole chromophores and show reversible photoconversion between two light-absorbing states. In most cases, the two light-absorbing states are stable under dark conditions, but in some cases, the photoproduct state undergoes thermal relaxation back to the dark-adapted state during thermal relaxation. In this study, we examined the engineered CBCR GAF domain, AnPixJg2_BV4. AnPixJg2_BV4 covalently binds biliverdin IX-alpha (BV) and shows reversible photoconversion between a far-red-absorbing Pfr dark-adapted state and an orange-absorbing Po photoproduct state. Because the BV is an intrinsic chromophore of mammalian cells and absorbs far-red light penetrating into deep tissues, BV-binding CBCR molecules are useful for the development of optogenetic and bioimaging tools used in mammals. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis on the Phe319 position. We succeeded in obtaining variant molecules with higher chromophore-binding efficiency and higher molar extinction coefficient. Furthermore, we observed a wide variation in thermal relaxation kinetics, with an 81-fold difference between the slowest and fastest rates. Both molecules with relatively slow and fast thermal relaxation would be advantageous for optogenetic control.


Assuntos
Proteínas de Bactérias , Biliverdina , Cianobactérias , Fotorreceptores Microbianos , Fitocromo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biliverdina/química , Cianobactérias/metabolismo , Luz , Mutagênese , Fitocromo/química , Conformação Proteica , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Ligação Proteica , Fenilalanina/química , Fenilalanina/genética , Simulação de Dinâmica Molecular
17.
Plant J ; 117(6): 1893-1913, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38289877

RESUMO

Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.


Assuntos
Proteínas de Arabidopsis , Fitocromo , Luz , Melhoramento Vegetal , Plantas , Estresse Fisiológico
18.
Plant Mol Biol ; 114(1): 1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177976

RESUMO

Phytochrome-interacting factors (PIFs) belong to a subfamily of the basic helix-loop-helix (bHLH) family of transcription factors, which serve as a "hub" for development and growth of plants. They have the capability to regulate the expression of many downstream genes, integrate multiple signaling pathways, and act as a signaling center within the cell. In rice (Oryza sativa), the PIF family genes, known as OsPILs, play a crucial part in many different aspects. OsPILs play a crucial role in regulating various aspects of photomorphogenesis, skotomorphogenesis, plant growth, and development in rice. These vital processes include chlorophyll synthesis, plant gravitropism, plant height, flowering, and response to abiotic stress factors such as low temperature, drought, and high salt. Additionally, OsPILs are involved in controlling several important agronomic traits in rice. Some OsPILs members coordinate with each other to function. This review summarizes and prospects the latest research progress on the biological functions of OsPILs transcription factors and provides a reference for further exploring the functions and mechanism of OsPILs.


Assuntos
Oryza , Fitocromo , Fitocromo/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Plant Cell Environ ; 47(5): 1513-1525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251425

RESUMO

The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , DNA/metabolismo , Reparo do DNA/genética , Luz , Meristema/genética , Meristema/metabolismo , Mutação , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo
20.
J Exp Bot ; 75(8): 2403-2416, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38189579

RESUMO

Many ferns thrive even in low-light niches such as under an angiosperm forest canopy. However, the shade adaptation strategy of ferns is not well understood. Phytochrome 3/neochrome (phy3/neo) is an unconventional photoreceptor, found in the fern Adiantum capillus-veneris, that controls both red and blue light-dependent phototropism and chloroplast photorelocation, which are considered to improve photosynthetic efficiency in ferns. Here we show that phy3/neo localizes not only at the plasma membrane but also in the nucleus. Since both phototropism and chloroplast photorelocation are mediated by membrane-associated phototropin photoreceptors, we speculated that nucleus-localized phy3/neo possesses a previously undescribed biological function. We reveal that phy3/neo directly interacts with Adiantum cryptochrome 3 (cry3) in the nucleus. Plant cryptochromes are blue light receptors that transcriptionally regulate photomorphogenesis; therefore, phy3/neo may function via cry3 to synchronize light-mediated development with phototropism and chloroplast photorelocation to promote fern growth under low-light conditions. Furthermore, we demonstrate that phy3/neo regulates the expression of the Cyclin-like gene AcCyc1 and promotes prothallium expansion growth. These findings provide insight into the shade adaptation strategy of ferns and suggest that phy3/neo plays a substantial role in the survival and growth of ferns during the tiny gametophytic stage under low-light conditions, such as those on the forest floor.


Assuntos
Gleiquênias , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fototropinas/genética , Gleiquênias/metabolismo , Células Germinativas Vegetais , Fototropismo/fisiologia , Criptocromos , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...